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Estimation of Tropospheric Fluctuations
Using GPS Data

C. J. Naudet
Tracking Systems and Applications Section

This article reports on a method of extracting tropospheric turbulence statistics
from the Global Positioning System (GPS) Flinn database. The elevation and site
dependence of the GPS residuals are shown to agree with the expectations of tropo-
sphere delay fluctuations. The GPS residuals are shown to have temporal statistics
that are consistent with the assumed turbulence model. The turbulence param-
eter, Cn, is extracted from the GPS residuals and is found to be consistent with
both water vapor radiometer and very long baseline interferometry measurements.
Seasonal and diurnal variations in Cn were observed to be consistent with other
measurements and compared well with a simple wet refractivity model. This tech-
nique for obtaining Cn from GPS data may be useful for several classes of Ka-band
(32-GHz) radio science experiments, as they will be limited by tropospheric phase
fluctuations.

I. Introduction

Tropospheric delay fluctuations are a dominant error source for most classes of Ka-band (32-GHz)
radio science experiments and high-frequency radio interferometry. This article reports on the use of the
Global Positioning System (GPS) Flinn database to estimate the level of the tropospheric fluctuations
at sites with GPS receivers. Development of a large database of the tropospheric seasonal, diurnal,
and site fluctuations will serve many purposes. These measurements could help in the understanding of
Ka-band telemetry array error budgets and allow for improved observable covariances for radio science,
very long baseline interferometry (VLBI), and Doppler measurements. Improved estimates of observable
covariances lead to more accurate parameter estimates and reduced parameter variance. In addition,
knowledge of seasonal, diurnal, and site dependence of the tropospheric fluctuations could assist in the
optimal scheduling of planned radio science experiments. The GPS global network database is ideally
suited for use in the development of troposphere fluctuation statistics.

The GPS global network consists of over 20 satellites in 6 equally spaced orbital planes at an altitude
of ∼20,000 km and a worldwide distribution of ground receivers, presently over 50. Typically, from four
to eight satellites are in view at any time. GPS satellites transmit at frequencies L1 and L2 (1.227 and
1.575 GHz). The dual-frequency (ionosphere-free) GPS carrier phase data received on the ground may
be written as

Φ =
dgpsνcarrier

c
+ ∆tclockνcarrier +

τtropνcarrier
c

+ noise+ bias (1)
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where d is the range to the satellite, ν is the carrier frequency, c is the speed of light, ∆t is a clock offset
term, and τtrop is the tropospheric delay along the line of sight to the satellite. The data obtained from
the ground receivers are used in a global estimation for satellite orbits, receiver locations, transmitter
clock offsets, zenith tropospheric delays, and other parameters. In addition, for each satellite–receiver
combination, a residual is saved for every observation (the sampling time was ∼7.5 min for data analyzed
in this article). The residuals are the delay difference between each observation and its computed predicted
value from the model. The rms of the residuals, averaged over a day, is ∼0.3 cm. At JPL, the GPS Flinn
analysis team produces the daily solution sets and residuals. Data exist from June 1992 to the present
and are obtained 24 hours a day in all weather conditions.1

Presently, an estimation of GPS zenith troposphere delay and other parameters is carried out by a
global estimation process (a sequential pseudo-epoch state process noise filter). Parameter estimates
and residuals are calculated every 7.5 min, the sampling time (i.e., one mean zenith tropospheric delay
is estimated every sampling interval for each ground site). It is expected that the residuals will have
significant contributions from the tropospheric fluctuations that occur over time scales shorter than the
sampling time (frequencies >2 mHz). The contribution to the residuals from lower-frequency tropospheric
fluctuation components is more complex and depends upon the details of the GPS global filter/estimation
algorithm. The GPS global estimation algorithm currently models the stochastic troposphere by a first-
order temporal Gauss–Markov random process, although there is strong evidence [1] that the troposphere
should be modeled by the spatial and temporal Kolmogorov turbulence theory. Since the Kolmogorov
spatial and temporal correlations are not included in the GPS global estimator, it is expected that a
portion of the low-frequency tropospheric fluctuations will remain in the GPS residuals. The hypothesis
is formed that the GPS residuals are dominantly tropospheric delay fluctuations.

The organization of this article is as follows: In the next section, I discuss the origin of the GPS residuals
used here and demonstrate that the variance of the residuals is proportional to sin2(θ), as expected if
there were significant tropospheric components to the residual. In Section III, the Allan deviation and
probability density function for the GPS residuals are computed and shown to be consistent with that
expected from a Kolmogorov turbulent process. Section IV discusses the extraction of tropospheric
fluctuation statistics from the GPS database. A thorough discussion of the seasonal, site, and diurnal
dependence of the turbulence parameter, Cn, is given in Section V, and a comparison with a mean wet
refractivity model is discussed in Section VI. Finally, the summary is given in Section VII.

II. GPS Residuals

The satellite viewing angles for a typical day (February 4, 1994) at the Goldstone GPS site are shown
in Fig. 1(a). The GPS satellites in view at any moment are scattered over wide angles in azimuth and
elevation. Histograms of the elevation (bin size = 1 deg) and azimuth (bin size = 4 deg) are shown in
Figs. 1(b) and 1(c), respectively. The GPS satellites are distributed approximately uniformly in azimuth
and are peaked at ∼25 deg in elevation. To avoid multipath effects, the Flinn analysis team has chosen an
elevation cutoff of ∼20 deg.2 Since the tropospheric delay fluctuations at time scales greater than ∼200 s
are expected to be linearly proportional to the air mass between the satellite and the GPS receiver,3 it is
expected that the magnitude of fluctuations in the residual will have a∼1/ sin θ dependence, where θ is the
elevation angle. Figure 2 shows the GPS residual rms dependence on elevation angle for a 10-day period,
June 12–21, 1994, for four different sites: Alberthead, British Columbia (B.C.); Goldstone, California;

1 The full details of the GPS Flinn analysis can be found in F. H. Webb and J. F. Zumburge, An Introduction to
GIPSY/OASIS II, JPL D-11088 (internal document), Jet Propulsion Laboratory, Pasadena, California, July 1993.

2 The GPS Flinn team changed the elevation cut to 15 deg and the interval sampling time to 300 s for all data processed
after November 1, 1995. In addition, improvements in various software models were implemented at that time.

3 R. Linfield, “Troposphere Delay Variance as a Function of Elevation Angle and Time Span,” Deep Space Tracking Systems
Group Note (internal document), Jet Propulsion Laboratory, Pasadena, California, December 2, 1994.
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Fig. 1.  February 4, 1994, Goldstone (a) satellite viewing angles, (b) GPS satellite elevation
distribution, and (c) GPS satellite azimuth distribution.

(b) (c)

Fortaleza, Brazil; and Kourou, French Guiana (F.G.). The sites at Fortaleza and Kourou are in tropical
regions that on average are much wetter than the other two sites, Alberthead and Goldstone. Fortaleza
and Kourou have a 10-day averaged rms residual delay (〈rms〉) of 0.85 and 0.92 cm, respectively. The
Goldstone and Alberthead sites are found to have 〈rms〉 values of 0.34 and 0.51 cm, approximately a
factor of two to three smaller than the wet sites. The solid line on each figure is a least-squares fit using
the function form

rms2 = a+
b

sin2(θ)
(2)

Good agreement is found with the assumption of a constant and an airmass-dependent contribution
(1/sin θ) to the variance of the residuals. This may correspond to a nontropospheric (constant) and a
tropospheric component (∝ 1/ sin θ). The least-squares fit to the Alberthead site yields a = 0.16 cm2

and b = 0.07 cm2, which yields a 1/ sin θ component approximately twice as large as the constant com-
ponent at the peak elevation angle of 25 deg. Both a and b were found to vary with both site and
season; typically, factors of 2 to 3 are found from least-square estimates. If the constant and 1/ sin θ
terms do correspond to nontropospheric and tropospheric error sources, then it may be possible to isolate
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Fig. 2.  Elevation dependence of the GPS residuals:  (a) Alberthead, B.C., (b) Goldstone,
California, (c) Fortaleza, Brazil, and (d) Kourou, F.G.

the tropospheric fluctuation component by filtering the data based on elevation angle (this has been left
for future study). Other sources of possible error, such as multipath or TurboRogue receiver system
temperature, may also have approximately a 1/ sin θ dependence, but it is not expected that these terms
will have the site, seasonal, and diurnal dependence or the temporal statistics expected for tropospheric
effects. Rather than rule out all possible GPS error sources, which would entail a detailed study of the
GPS error budget, this article attempts to show that the residuals’ fluctuations are consistent with being
tropospheric turbulence.

III. Residual Statistics

A random function, f , observed as a time series may be characterized by a measure of its Allan
variance, the average fractional deviation stability:

[σy(∆t)]
2 =
〈[f(t+ 2∆t)− 2f(t+ ∆t) + f(t)]2〉

2∆t2
(3)

where ∆t are the time intervals between the measurements of f .
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The power law dependence of the Allan standard deviation (ASD) upon time interval is well known
for various stochastic noise processes; white noise and random walk have a −1 and −1/2 power law
dependence, respectively. Kolmogorov turbulence theory predicts a power law dependence of −2/3 for
tropospheric delay fluctuations with time scales greater than the troposphere height, h, divided by the
average wind speed, v: ∆t > h/v (∼200 s) (see [1]). The GPS Flinn database does not estimate the
tropospheric delay for each satellite but does estimate a single zenith tropospheric delay for each time
interval at each site. The ASD for the estimated zenith tropospheric delay as a function of the sampling
interval is shown in Fig. 3 for January 8, 1994. A significant disagreement with Kolmogorov turbulence
theory is observed: At short intervals, t < 20, 000 s, the dependence has random-walk characteristics
consistent with what is assumed in the global estimation process filter; at longer times, the dependence
switches rapidly to white noise. We can attempt to obtain the correct statistics by reconstructing the
tropospheric delay for each satellite as

τc(t) = τ(t)res +
τz(t)− 〈τz〉
sin(θ(t))

(4)

where τ(t)res is the GPS residual for that satellite, τz(t) is the zenith troposphere estimate at that site,
and 〈τz〉 its time average.4 The elevation dependence is corrected by the inclusion of the 1/ sin θ term.
The ASD for the corrected satellite tropospheric delay as a function of time interval is shown in Fig. 4
for the GPS data from April 4, 1994, at four different sites. A power law fit to each site (for ∆t < 8000 s)
yields an estimated slope of 0.75 ± 0.05 s−1, consistent with the Kolmogorov turbulence value of 2/3.
Figure 4 indicates an observable difference in the magnitude of the ASD curve between different sites.
The wetter sites (Kourou and Fortaleza) typically have an ASD magnitude that is approximately a factor
of 2 to 3 larger than the drier sites (Goldstone and Alberthead).

An additional method of statistical comparison of turbulence phenomena is to examine the prob-
ability density function (pdf) of the fluctuations [2]. The tropospheric delay fluctuations are defined
as the difference in the tropospheric delay between successive sampling times, 450 s. For GPS data,
this is calculated using τ(t)res.5 If a time series is distributed as random walk (or any first-order
Gauss–Markov process), then its fluctuation pdf is the normal distribution. However, the expected
probability distribution function for a true turbulent time series is a non-Gaussian distribution. These
non-Gaussian pdf’s are well modeled by stretched exponential distributions [2] or Levy–Pareto distribu-
tions [3]. Hence, the frequency distributions of satellite residuals should indicate the underlying statistics.
However, the elevation dependence must first be removed. This can most easily be done by mapping the
residuals to zenith:

Rz(i, t) = τi(t)resm [θ(t), i] (5)

where Rz is the zenith mapped residual for satellite i at time t and m[θ(t), i] is an elevation mapping
function [4], (∼sin θ) for satellite i at elevation θ. Figure 5 plots the satellite zenith residual pdf; the
black dashed curve is a least-squares Gaussian fit. Clearly, the GPS zenith residual pdf has tails that
are very non-Gaussian. The solid curve in Fig. 5 is a calculation for a Kolmogorov turbulence model pdf
[3,5]. A least-squares fit of the GPS zenith residual pdf using a Pareto distribution yields a characteris-
tic exponent, α, of ∼3.0, in agreement with the expected value from Kolmogorov turbulence (see details in

4 Since we are concerned only with fluctuations, the reconstructed tropospheric delay is defined about a mean value of zero.
The time average is over 24 h. It should be noted that the 〈τz〉 term acts as a high-pass filter; all τz(t) fluctuations that
occur over time scales shorter than the averaging period will contribute to the fluctuations in τc(t). By adjusting the
running average time window, an optimal τc(t) can be constructed.

5 It is equivalent to use either τres(t) or τc(t) since the first differences of τz(t) are very Gauss-like.
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Fig. 3.  The Allan standard deviation of the GPS tropospheric delay estimate.
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Appendix A). The GPS zenith residual pdf is clearly in much better agreement with the Kolmogorov
pdf, consistent with the interpretation of an underlying Kolmogorov turbulence.6 In addition, a stronger
statement can be made by noting that if the sampling time is increased (e.g., by a factor of from 10 to
4500 s), the pdf is still observed to have non-Gaussian tails and the pdf follows the scaling law of Eq. (A-
4). This type of power law pdf scaling is expected for scale invariant intermittency cascade models of
turbulence.

IV. Estimation of Tropospheric Fluctuations

The line-of-sight delay fluctuations of an initially plane wave front that traverses the atmosphere can
be characterized by the structure function of delay:

Dτ (R) = 〈[τ(r + R)− τ(R)]2〉 (6)

where r is the line-of-sight vector, R is a displacement vector, and the angle brackets represent an ensemble
average. In addition, we assume that Dτ (R) depends only on |R| = R and that the turbulence is locally
homogeneous and isotropic. The tropospheric delay may be defined as

τ =
1

sin θ

∫
χ[x + r(z)]dz (7)

where χ is the refractivity and r(z) is the vector from the ground in the direction of interest, at height z.
Then the variance of delay over a time interval T is

6 The reader should be reminded of a subtle point: the power law dependence of the tropospheric delay structure functions
is 2/3 (α = 3) only for times larger than 200 s (Vwind =∼ 10 m/s); for shorter times, the power law goes as 5/3 (α = 6/5)
(see [1]).
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σ2(T ) =
1
T 2

∫
(T − t)Dτ (t)dt (8)

(See Eq. (B-3) of [1].) An essential component in our assumptions is that tropospheric delay fluctuations
are well represented by the frozen flow turbulence model. The two primary assumptions in this model are
as follows. First, the spatial structure of index of refraction fluctuations follows Kolmogorov turbulence
theory [6,7]:

Dχ(R) = 〈[χ(r +R)− χ(R)]2〉 =
(
CnR

1/3
)2

(9)

where Cn (the structure constant) characterizes the rockiness of the spatial inhomogeneity of the tropo-
sphere. Second, as regards frozen flow, temporal fluctuations are due to spatial patterns moving over the
site by the wind.

The first assumption implies that the delay standard deviation, στ , and the Allan standard deviations,
σy(∆t), vary linearly with the structure constant:

στ ∝ Cn

σy(∆t) ∝ Cn

 (10)

The second assumption, along with the flat slab approximation (the assumption that the structure func-
tion, Dχ, is independent of altitude up to some height, h), allows us to model both στ and σy(∆t) by
three parameters: the slab height (typically 2 km), the average slab wind velocity (8 to 10 m/s), and Cn
(mean DSN value of 1.1× 10−7 m−1/3).

If the ensemble wind velocity and slab height are used at each site, then under most circumstances,
the magnitude of the fluctuations can be characterized by one parameter, Cn, the structure constant [1].
The tropospheric delay has both wet and dry components. The dry component is approximately 2 m
at zenith and varies slowly and smoothly. The wet component (∼10 cm) is due to water vapor and has
large temporal and spatial random variations. The extracted structure constant, Cn, will be composed
of wet and dry components with the wet component dominating (greater than ∼80 percent). Ideally,
Cn is a strict constant over all the temporal and spatial ranges of interest, characterizing the strength of
the stochastic (not systematic) tropospheric fluctuations. However, tropospheric fluctuations are driven
by temperature differences, wind velocity, and water vapor pressure fluctuations, so we would expect to
observe site, seasonal, and diurnal Cn systematic dependencies. The GPS Flinn database may help us
develop an understanding of these systematic variations.

An extraction of the structure constant for a given site can be obtained by a calculation of the
theoretical zenith tropospheric delay standard deviation, σtheory(T ), for some nominal value of Cn (full
details are given in Appendix B) and a calculation of the actual σresidual measured with the GPS for a
given time interval, T :

Cn(T ) ∝ ζ σresidual(T )
σtheory(T )

(11)

where ζ is a correction factor (currently ζ = 1) that depends upon the fraction of the tropospheric
fluctuations contained in the residuals and the proportion of the residuals that consists of nontropospheric
error sources (i.e., multipath, instrumental, ionosphere, etc.). The value of ζ may change depending upon
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any changes in the GPS Flinn analysis procedure or software. The time interval chosen for the Cn
extraction in this article was 450 s, the sampling time. The extracted Cn’s are then averaged over longer
time periods: 2 hours, 4 hours, daily, or longer.

V. GPS Cn Results

A GPS-extracted Cn time series is shown for the Goldstone site during a 10-day period from
June 12 to 21, 1994, in Fig. 6(a); a 4-hour averaging period is used. The average value for this 10-
day period was found to be ∼0.95 × 10−7 m−1/3. The absolute magnitude is consistent with what is
experimentally obtained from other measurements, for instance, the yearly average Goldstone value ob-
tained through VLBI estimation [1,8]. Diurnal variations of 25 to 50 percent are observed with the largest
Cn amplitudes observed at approximately 4:00 p.m. local time. The power spectrum of the time series [9],
Fig. 6(b), also shows a strong diurnal power amplitude. Examination of the other sites shows similar day
and night behavior. Studies of phase stability at the very large array (VLA) [10], water vapor radiometer
(WVR) fluctuations in Puerto Rico,7 and tropospheric scintillations at 14 and 11 GHz [11] all find diurnal
variations consistent with the present observations.

The extracted Cn time series for a much longer period of time, from January 1 to August 1, 1994, are
shown in Fig. 7 for both the Alberthead, B.C., and Fortaleza, Brazil, sites, using 2-hour averages. The
9-month Cn averages are 1.9× 10−7 m−1/3 and 1.3× 10−7 m−1/3 for Fortaleza (wet site) and Alberthead
(dry site), respectively. The rms of the Cn is found to be directly proportional to the average value. From
Fig. 7, we conclude that the extracted Cn has a dynamic range of at least a factor of 5 and an upper
estimate of the noise floor is less than 50 percent of the average Cn value. Comparison with winter WVR
data at the Goldstone site (see below) suggests that the noise floor could be much lower.

Two-hour extracted Cn averages in Fig. 7 illustrate that the diurnal variations at both sites dominate
over the smaller seasonal trends and somewhat mask the site differences. By using a 20-day moving
average to filter out the high-frequency components, the seasonal variations can be extracted. An increase
of approximately 10 percent from winter to summer is observed at the Alberthead, B.C., site, and a
decrease of approximately 10 percent is found at the Fortaleza site. These seasonal variations are smaller
than what is expected from both WVR and VLBI experiments, where a factor-of-two variation about
the annual mean is typically measured. However, the sign of the seasonal change is consistent with the
known meteorological patterns at those sites.

The seasonal dependence of the day and night Cn values is examined in Fig. 8 for Goldstone. The
figure shows the 2-hour averaged Cn data divided into a day period (1 p.m. through 9 p.m. local time)
and a night period (12 p.m. through 8 a.m. local time),8 then smoothed with a 20-day moving average
process. The night period shows little variation in Cn between the winter and the summer. The day
period, however, shows an increase of approximately 25 percent in the Cn value from the winter to summer
periods. This seasonal dependence analysis was checked by taking the entire 2-hour Cn time series and
dividing it up into monthly periods, and then calculating the power spectral density for each monthly
period. The amplitude of the diurnal period is the strongest for the summer months of June and July
and weakest in the November-to-January time period.

Finally, a direct comparison with WVR estimates of tropospheric fluctuations can be made for the
Goldstone site. Throughout 1994, an R6 WVR acquired data at DSS 13, roughly 20 km from the
DSS-15 GPS TurboRogue. The results have recently been published [8]. To compare these with the GPS

7 D. E. Hogg, “A Study of the Water Vapor Fluctuations at Selected Sites in Puerto Rico,” VLB Array Memorandum 312,
Arecibo Observatory, Puerto Rico, January 24, 1984.

8 The day and night time periods were selected to agree with those used in [8].
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Cn estimates, I have taken the 200-second ASD measurements of Fig. 6(a) in [8] to derive Cn values.
The WVR data are divided into a night (12 p.m. through 8 a.m. local time) and a 24-hour time series.
Figure 9 shows a comparison of both the day and night GPS time series and the WVR time series.
Surprisingly, both data sets show that the difference between the day and night Cn variation becomes
negligible in the winter months. A significant difference in the two data sets becomes apparent during
the summer months. Although both data sets show that the daytime fluctuations become larger than the
nighttime fluctuations during the summer months, the WVR data suggest that the day–night difference
is approximately 50 percent, whereas the GPS data suggest a day–night difference of approximately
25 percent. Although additional comparisons need to be made, this difference may suggest that an
improvement in the Cn extraction procedure could be made. It may be that the GPS global filtering and
estimation routines used in the GPS Flinn data reduction are absorbing some fraction of the seasonal
tropospheric fluctuations into other parameters. Because nontropospheric contributions to the residuals
have a different spatial and temporal dependence, it might be possible to solve for the component of the
residuals that has the correct functional form, thus improving the extraction process.
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Fig. 9.  A comparison of WVR and GPS Cn.

VI. Mean Wet Refractivity Model

The relationship between the structure constant, Cn, and the variance of the index of refraction
fluctuation [7] is

Cn ∝
√
〈n2

1〉 (12)

where n1 is the index of refraction fluctuation and is related to n, the index of refraction, as

n = 〈n〉(1 + n1)
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Refractivity is related to the index of refraction by

χ = (n− 1)× 106 (13)

Recent tropospheric scintillation experiments have shown strong correlation between 〈n2
1〉 and 〈χwet〉 (i.e.,

〈n2
1〉 ∝ 〈χwet〉 [11]). Refractivity is given by

χ = χdry + χwet ∼= 77.6
PD
T
− 12.8

PV
T

+ 3.776× 106PV
T 2

(14)

where PD is the partial pressure of dry air in mbar, PV is the water vapor pressure in mbar, and T
is temperature in Kelvin. Using surface meteorological data, an estimate of the mean wet and dry
refractivity can easily be obtained. The weakness, however, is that the surface meteorological data do not
always correspond to the true troposphere weather conditions at high altitude. Various studies of surface
meteorological data and phase fluctuations in radio interferometry found that there is strong correlation
with temperature and direct sunlight duration but anticorrelation with cloud cover [12]. Thus, under
ideal conditions, we may expect a good correlation of Cn and refractivity calculated with the surface
meteorological parameters.

An estimate of Cn based on a mean refractivity model using surface meteorological data has been made
for the Goldstone site during the 10-day period in June 1994. As in [11], a linear relationship between
wet refractivity and Cn is assumed. In addition, since dry refractivity can sometimes contribute as much
as approximately 20 percent of the tropospheric delay fluctuations, a dry refractivity term, χdry−〈χdry〉,
is also included in the model, along with a lag term. The modified model is as follows:

Cn(t) = A[χ(t− lag)−B] (15)

where the constants A, B, and lag were obtained by linear regression techniques. The lag term accounts
for the thermal inertia of the atmosphere, and B is a bias that is approximately equal to 〈χdry〉. For the
June 1994 period, the model parameters were found to be A = 1.8×10−9, B = 206.9, and lag = 8.0 hours.
This model is shown as the solid curve in Fig. 6(a), along with the GPS-derived Cn values for the same
period. A very reasonable agreement is observed between the two data sets. Both show a strong diurnal
dependence and the point-to-point fluctuations in both data sets are well correlated.

VII. Summary

This article discussed a method of extracting tropospheric fluctuation statistics from the GPS Flinn
database. The elevation and site dependence of the GPS residuals were approximately what is expected
from tropospheric fluctuations. The GPS residuals were found to have temporal and probability density
statistics similar to those expected from Kolmogorov turbulence models of the troposphere.

The tropospheric turbulence parameter, Cn, was extracted from the GPS Flinn database. The absolute
magnitudes of Cn were in general agreement with both WVR and VLBI measurements. The long-term
average Cn value differed from site to site, with the drier sites (Goldstone and Alberthead) having Cn
values approximately 50 percent of the value at wet sites (Fortaleza and Kourou). Strong diurnal Cn
variations of 25 to 50 percent were found in agreement with recent WVR measurements. The diurnal
variations were found to be seasonally dependent, with almost no difference being observed during the
winter months. A mean wet refractivity model, known to correlate strongly with the seasonal tropospheric
fluctuations, was shown to be consistent with the GPS Cn measurements for a 10-day time period during
the summer of 1994 in Goldstone.
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Direct comparisons with WVR estimates of the tropospheric fluctuations suggest that the GPS extrac-
tion technique is not yet optimized. The GPS Cn estimate seems to be underestimating the maximum
summer seasonal fluctuation by perhaps as much as 50 percent. An elevation and frequency filter was
suggested as the next step in optimizing the Cn extraction algorithm.

This technique of estimating the tropospheric turbulence parameter, Cn, using the GPS Flinn residuals
seems very promising. However, before a statistical model of the systematic Cn variations is developed,
the Cn extraction algorithm should be improved and a long-term (a year or more) comparison with WVR
data (at the same site) be undertaken.
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Appendix A

Levy–Pareto Distribution Function and Turbulence

The Levy–Pareto distributions are stable distributions and are sometimes called stable Levy distribu-
tions or stable Paretain distributions. A probability density function, f(x), can be obtained by a Fourier
transform of its characteristic function, L(t). A probability density function is stable if there exists a
b > 0 for all b1 > 0 and b2 > 0 such that

L(b1t)× L(b2t) = L(bt) (A-1)

This means that the distributions all have the same “shape.” Two well-known stable distributions are
the Gaussian and Cauchy distributions. Both are special cases of the Levy distribution. The Levy
characteristic function is defined as

L(t) = exp
{
iδt− |γ|α

(
1− iβt
|t|

)
tan

πα

2

}
α 6= 1

= exp
{
iδt− |γ|α

(
1− iβ 2

π
ln(|t|)

)}
α = 1


(A-2)

The distribution has four parameters, α, β, γ, and δ. Where δ is the location parameter, typically δ = 0,
when the mean exists (α > 0) δ = mean. The scale parameter is γ and is a measure of dispersion; it is
related to the standard deviation of the normal distribution by a factor of 1/

√
2, γ > 0. The skewness

parameter is β, is between +1 and −1, and typically is zero. For a symmetrical distribution, β = 0.
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The primary parameter is the characteristic exponent α, which determines the flatness of the tails of
the distribution; thus, the finiteness of the moments of the distribution critically depends upon this
exponent. When α = 2, β = 0, γ = σ/

√
2, and δ = 0, the distribution is Gaussian. For a Cauchy

distribution, α = 1, β = 0, γ = interquartile range, and δ = median. Now an important property of the
Levy distribution is that, for β = 0, the tail of the survival function, S(x) [1 − F (x), where F (x) is the
cumulative distribution function], follows the law of Pareto:

S(x > c) =
( c
x

)−α
c > σ (A-3)

This simply states that the probability of finding a value of x greater than a constant c goes as a power
law with the exponent −α.

The Levy distribution is connected to turbulence through the law of Pareto. A considerable body
of empirical and theoretical evidence supports the scale invariant and intermittency cascade model of
turbulence [3,13]. This model is limited by an inner scale (∼cm) and an outer scale (>1000 km) and is
characterized by two critical exponents, H and α. The scaling exponent, H, usually named the Hurst
exponent, relates the fluctuations ∆X(∆t) in field X(t),∆X(∆t) = X(t+ ∆t)− x(t), at large and small
scales, explicitly:

P

{
∆X

(
∆t
p

)}
= P

{
∆X(∆t)
pH

}
(A-4)

where P{z(t)} is the probability density function of the field z(t) and p > 1. This simply means that
decreasing the scales by a factor of p decreases the fluctuations by pH . The relationship between the
Hurst exponent, H, and the power law slope, B, of the time-series power density spectra is B = 1 + 2H
[5]. Thus, the Hurst exponent can be trivially obtained from the power density spectra.

The second critical exponent, α, characterizes the extreme fluctuations (the intermittency), and the
survival function follows a hyperbolic functional form first proposed by Mandelbrot:

S(∆X > c) ∝
( c

∆X

)−α
c→∞ (A-5)

The relationship between the two critical exponents of classical turbulence and the scaling behavior for
the statistical moments can be obtained:

〈∆X(∆t)q〉 =
∫

[∆X]qP (∆X)d[∆X] ∝ ∆tk(q) (A-6)

where the angle brackets represent ensemble averaging, q is the moment order, and k(q) is a scaling
exponent dependent upon the moment order and the probability density function of the turbulence (α
and H scaling). For the classical Kolmogorov turbulence theory (sometimes referred to as K41), a simple
relationship exists (for the second-order moment, q = 2) between the probability space exponent, α;
the temporal scaling exponent, H; and the statistical structure function exponent [13,14]: k(q = 2) =
2H = 2/α. For Kolmogorov turbulence, both the temporal structure function exponent (q = 2 for
∆t > 200 seconds) and the ASD have power law exponents of 2/3 [1]. Thus, we expect H=1/3, B=5/3,
and α = 3.0 for Kolmogorov turbulence.
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Appendix B

GPS Zenith Tropospheric Delay Variance

The variance of a random function of time, f(t), over an interval, T , is

σ2(T ) =
1
T 2

∫
(T − t)Df (t)dt (B-1)

where Df (t) is the structure function of f and the limits of integration are from 0 to T . If we define the
satellite-averaged zenith delay as

P = f(t) =
1
N

∑
τi(t)mi[θ(t)], i = 1, 2, 3, · · · , N (B-2)

where i is one of the N visible satellites, m(θ) is the mapping function (∼sin θ, see [4]), τ(t) is the
tropospheric delay along the direction of the satellite, and τ(t) is given as

τ =
1

m(θ)

∫
χ[x + r(θ, ϕ, z)]dz (B-3)

where χ is the refractivity, x is the coordinate vector of the site in question, and r is the vector along the
direction of the satellite at elevation θ and azimuth ϕ with a projection along the vertical axis of z, then
the structure function of the satellite-averaged zenith tropospheric delay is given as

Dp(∆t) = 〈[P (t+ ∆t)− P (t)]2〉 (B-4)

where the angle brackets denote an ensemble averaging. Combining Eqs. (B-2) through (B-4) and inter-
changing the ensemble averaging and the integrations obtains

Dp(∆t) =
∑
ij

1
N2

∫∫
[〈χ(ri, t+ ∆t)χ(rj , t+ ∆t)〉+ 〈χ(ri, t)χ(rj , t)〉 − 2〈χ(ri, t)χ(rj , t+ ∆t)〉] dzidzj

(B-5)

where both i and j range from 1 to N . The z integration ranges from 0 to h, where h is the effective
height of the troposphere.

The frozen flow assumption states that the temporal fluctuations are caused by spatial fluctuations
that are moved past the site by the wind. If the medium is stationary in time and homogeneous in space,
then for a random function, f ,

f(r, t) = f(r + vt) (B-6)

where v is the wind velocity. The correlation function for f may then be written as
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〈f(ξ, ti)f(ζ, tj)〉 = 〈f(ξ + vti)f(ζ + vtj)〉 = 〈f(ξ − ζ + v(ti − tj))f(0)〉 (B-7)

This allows Eq. (B-5) to be reduced to

Dp(v∆t) =
∑
ij

1
N2

∫∫
[2〈χ(η)χ(0)〉 − 2〈χ(η + v∆t)χ(0)〉] dzidzj (B-8)

where η = ri−rj . In addition, the approximation that rj(t) = rj(t+∆t) has been made for computational
simplicity. This approximation is negligible for small ∆t, those GPS interval times for which the distance
moved by a satellite is small compared with the distances between the satellites.

Using Eq. (A-3) from [1], which is

〈χ(x1)χ(x2)〉 = 〈χ2〉 − 1
2
Dχ(|x1 − x2|) (B-9)

Eq. (B-8) is reduced to

Dp(|v|∆t) =
∑
ij

1
N2

∫∫
[Dχ(|η + v∆t|)−Dχ(|η|)] dzidzj (B-10)

where both i and j range from 1 toN . Using Eqs. (B-10) and (B-1), an estimate for the zenith tropospheric
delay variance can be written as

σ2(zenith) =
1
T 2

∫
(T − t)

∑
ij

1
N2

∫∫
[Dχ(|η + v∆t|)−Dχ(|η|)] dzidzjdt (B-11)

Thus, this estimate of the zenith tropospheric delay fluctuation is a temporal estimate over the interval
T and a spatial estimate over all the visible satellites during interval T . The primary assumption of the
Kolmogorov turbulence theory in the frozen flow model is that the structure function depends only upon
a displacement vector:

Dχ(|R|) = 〈[χ(r + R)− χ(R)]2〉 =

(
CnR

1/3
)2

1 + (R/L)2/3
(B-12)

where Cn is the structure constant, which characterizes the rockiness of the spatial inhomogeneity; L is
the saturation length, typically ∼3000 km; and R = |R|. The coordinate vectors η and v (lateral wind)
may be expressed in terms of θ, ϕ, and z as

|η| = |ri − r′j |

= [zi cot(θi) cos(ϕi)− z′j cot(θj) cos(ϕj)]2 + [zi cot(θi) sin(ϕi)− z′j cot(θj) sin(ϕj)]2 + [zi − z′j ]2

(B-13)

and
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|η + v∆t| = |ri − r′j + v∆t| = [zi cot(θi) cos(ϕi)− z′j cot(θj) cos(ϕj) + |vx∆t|]2

+ [zi cot(θi) sin(ϕi)− z′j cot(θj) sin(ϕj) + |vy∆t|]2 + [zi − z′j ]2 (B-14)

Using the GPS Flinn database and Eqs. (B-11) through (B-14), a direct calculation of σtheory at a given
time, t, can be made. To calculate σresiduals, the rms of P [Eq. (B-2)] is calculated over a sampling time,
T , where we replace τi(t)res for τi(t). Then, using Eq. (11), Cn can be extracted. Since even for short
sampling times some tropospheric fluctuations are absorbed in the GPS estimated parameter, τz(t), the
zenith troposphere delay, additional accuracy could be obtained by using Eq. (4) over a suitable interval;
this has been left for future study.

19


